Prof. ROBERTO FEOLA

QualificaProfessore Associato
Settore Scientifico DisciplinareMATH-03/A
Emailroberto.feola@uniroma3.it
IndirizzoLargo San Leonardo Murialdo 1
Struttura/Afferenza
  • Dipartimento di Matematica e Fisica
Altre informazioniCurriculum
Qualora le informazioni riportate a lato risultino assenti, incomplete o errate leggi le seguenti istruzioni
Per telefonare da un edificio dell'Ateneo all'altro SE il numero unico inizia con "06 5733xxxx" basta comporre le ultime quattro cifre del numero esteso.

Profilo INSEGNAMENTI Prodotti della ricerca Avvisi Ricevimento e materiale didattico

Contributo in Rivista

  • Local well posedness for a system of quasilinear PDEs modelling suspension bridges, FEOLA, ROBERTO; MASSETTI, JESSICA ELISA, , 9999Link identifier #identifier_person_53198-1 Dettaglio
  • Sub-exponential stability for the beam equation, FEOLA, ROBERTO; MASSETTI, JESSICA ELISA, , 2023Link identifier #identifier_person_122152-2 Dettaglio
  • Birkhoff Normal Form and Long Time Existence for Periodic Gravity Water Waves, BERTI, MASSIMILIANO; FEOLA, ROBERTO; PUSATERI, FABIO GIUSEPPE, , 2022Link identifier #identifier_person_64805-3 Dettaglio
  • Local well-posedness for the quasi-linear Hamiltonian Schrödinger equation on tori, FEOLA, ROBERTO, , 2022Link identifier #identifier_person_153223-4 Dettaglio
  • Long-time stability of the quantum hydrodynamic system on irrational tori†, FEOLA, ROBERTO, , 2022Link identifier #identifier_person_182224-5 Dettaglio
  • Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori, FEOLA, ROBERTO; MONTALTO, RICCARDO, , 2022Link identifier #identifier_person_176043-6 Dettaglio
  • Birkhoff Normal form for Gravity Water Waves, BERTI, MASSIMILIANO; FEOLA, ROBERTO; PUSATERI, FABIO GIUSEPPE, , 2021Link identifier #identifier_person_82196-7 Dettaglio
  • Long time existence for fully nonlinear NLS with small Cauchy data on the circle, FEOLA, ROBERTO, , 2021Link identifier #identifier_person_129365-8 Dettaglio
  • Long-Time Existence for Semi-linear Beam Equations on Irrational Tori, FEOLA, ROBERTO; GREBERT, BENOIT, , 2021Link identifier #identifier_person_111571-9 Dettaglio
  • Quadratic Life Span of Periodic Gravity-capillary Water Waves, BERTI, MASSIMILIANO; FEOLA, ROBERTO, , 2021Link identifier #identifier_person_128642-10 Dettaglio
  • Reducibility of Schrödinger Equation on the Sphere, FEOLA, ROBERTO; GREBERT, BENOIT, , 2021Link identifier #identifier_person_72597-11 Dettaglio
  • Corrigendum to ‘Reducibility of first order linear operators on tori via Moser's theorem’ [Journal of Functional Analysis 276 (3) (2019) 932–970] (Journal of Functional Analysis (2019) 276(3) (932–970), (S0022123618303793), (10.1016/j.jfa.2018.10.009)), FEOLA, ROBERTO; GIULIANI, FILIPPO; MONTALTO, RICCARDO; PROCESI, MICHELA, , 2020Link identifier #identifier_person_27577-12 Dettaglio
  • Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential, FEOLA, ROBERTO; GREBERT, BENOIT, , 2020Link identifier #identifier_person_89819-13 Dettaglio
  • Reducible KAM Tori for the Degasperis–Procesi Equation, FEOLA, ROBERTO; GIULIANI, FILIPPO; PROCESI, MICHELA, , 2020Link identifier #identifier_person_28807-14 Dettaglio
  • Time quasi-periodic traveling gravity water waves in infinite depth, FEOLA, ROBERTO; GIULIANI, FILIPPO, , 2020Link identifier #identifier_person_70608-15 Dettaglio
  • Finite dimensional invariant KAM tori for tame vector fields, CORSI, LIVIA; FEOLA, ROBERTO; PROCESI, MICHELA, , 2019Link identifier #identifier_person_170377-16 Dettaglio
  • Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, FEOLA, ROBERTO, , 2019Link identifier #identifier_person_176058-17 Dettaglio
  • On the integrability of Degasperis–Procesi equation: Control of the Sobolev norms and Birkhoff resonances, FEOLA, ROBERTO; GIULIANI, FILIPPO; PASQUALI, STEFANO, , 2019Link identifier #identifier_person_46290-18 Dettaglio
  • Reducibility for a class of weakly dispersive linear operators arising from the Degasperis–Procesi equation, FEOLA, ROBERTO; GIULIANI, FILIPPO; PROCESI, MICHELA, , 2019Link identifier #identifier_person_30450-19 Dettaglio
  • Reducibility of first order linear operators on tori via Moser's theorem, FEOLA, ROBERTO; GIULIANI, FILIPPO; MONTALTO, RICCARDO; PROCESI, MICHELA, , 2019Link identifier #identifier_person_174340-20 Dettaglio
  • Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, FEOLA, ROBERTO; PROCESI, MICHELA, , 2015Link identifier #identifier_person_144173-21 Dettaglio
  • Convergent series for quasi-periodically forced strongly dissipative systems, CORSI, LIVIA; FEOLA, ROBERTO; GENTILE, GUIDO, , 2014Link identifier #identifier_person_11787-22 Dettaglio
  • Domains of analyticity for response solutions in strongly dissipative forced systems, CORSI, LIVIA; FEOLA, ROBERTO; GENTILE, GUIDO, , 2013Link identifier #identifier_person_120911-23 Dettaglio
  • Lower-dimensional invariant tori for perturbations of a class of non-convex Hamiltonian functions, CORSI, LIVIA; FEOLA, ROBERTO; GENTILE, GUIDO, , 2013Link identifier #identifier_person_65953-24 Dettaglio

Libro

  • Link identifier #identifier_person_198159-25Dettaglio

Contributo in volume e atti di convegno

  • Link identifier #identifier_person_121272-26Dettaglio