STUDENTS ARE INTRODUCED TO THE METHODOLOGIES APPLIED IN AERONAUTICS FOR THE ANALYSIS OF AEROELASTIC PROBLEMS. THESE CONCERN FLUID-STRUCTURE INTERACTIONS, WITH ATTENTION TO INSTABILITY PHENOMENA LIKE FLUTTER AND DIVERGENCE. AEROELASTIC FORMULATIONS FOR 2D AND 3D WING MODELS ARE OBTAINED BY COUPLING STRUCUTRAL DYNAMMICS EQUATIONS WITH UNSTEADY AERODYNAMIC THEORIES, AND THEN SOLUTION METHODS ARE PRESENTED AND DISCUSSED.
scheda docente
materiale didattico
Theodorsen theory for 2D unsteady aerodynamics. V-g method for flutter analysis. Padè approximants of the `lift deficiency function' and related finite-state aeroelastic model. Correlation between Theodorsen theory and Wagner theory.
Aeroelastic modelling of 3D wings: bending-torsion structural dynamics model, `strip theory' aerodynamic model and application of the Galerkin method. Extension to swept wing analysis. Aeroelastic stability analysis.
Unsteady, 3D aerodynamics: incompressibe, inviscid flows; diffferential formulation for quasi-potential incompressible flows; boundary integral formulation for quasi-potential flows and panel method for its numerical solution. Definition of the aerodynamic matrix for aeroelastic stability analysis. Rational matrix approximation of the aerodynamic matrix, corresponding finite-state aeroelastic model and flutter analysis.
Aeroelastic model of wing section with trailing-edge flap. Actuation of flap for flutter suppression, as derived from application of optimal control theory with inclusion of an observer.
Programma
An introduction to the 2 dofs semi-rigid wing model, and derivation of the governing equations through application the Lagrangian formulation. Steady and quasi-steady, 2D, aerodynamic models for the aeroelastic analysis of the semi-rigid wing model. Study of aeroelastic flutter and divergence.Theodorsen theory for 2D unsteady aerodynamics. V-g method for flutter analysis. Padè approximants of the `lift deficiency function' and related finite-state aeroelastic model. Correlation between Theodorsen theory and Wagner theory.
Aeroelastic modelling of 3D wings: bending-torsion structural dynamics model, `strip theory' aerodynamic model and application of the Galerkin method. Extension to swept wing analysis. Aeroelastic stability analysis.
Unsteady, 3D aerodynamics: incompressibe, inviscid flows; diffferential formulation for quasi-potential incompressible flows; boundary integral formulation for quasi-potential flows and panel method for its numerical solution. Definition of the aerodynamic matrix for aeroelastic stability analysis. Rational matrix approximation of the aerodynamic matrix, corresponding finite-state aeroelastic model and flutter analysis.
Aeroelastic model of wing section with trailing-edge flap. Actuation of flap for flutter suppression, as derived from application of optimal control theory with inclusion of an observer.
Testi Adottati
Gennaretti, M., Lezioni di Aeroelasticità, Edizioni Efesto, Roma, 2021.Bibliografia Di Riferimento
Bisplinghoff, R.L., Ashley H., Halfman, R., Aeroelasticity. Dover Publications, 1996. Fung, Y.C., An Introduction to the Theory of Aeroelasticity. Dover Publications, 1993. Hodges, D.H. and Pierce, A., Introduction to Structural Dynamics and Aeroelasticity. Cambridge Aerospace Series, 2002.Modalità Erogazione
traditionalModalità Frequenza
optionalModalità Valutazione
separate written and oral exam