REGOLAMENTO DIDATTICO E ORGANIZZATIVO DEL CORSO MINOR IN

INGEGNERIA DEL SUONO

PARTE I – INFORMAZIONI GENERALI

Proposta di attivazione

Prima istituzione

Anno accademico

2025-2026

Dipartimento di riferimento

Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche

Corso interdipartimentale

No

Organo di gestione

L'organo collegiale di gestione è il Collegio Didattico di Ingegneria Informatica, Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche il quale provvede a:

- Predisporre il regolamento didattico-organizzativo
- Ammettere gli studenti al corso
- Riconoscere le attività pregresse
- Nominare le Commissioni per la selezione iniziale e per la prova finale
- Predisporre il giudizio finale di positiva conclusione del percorso formativo

Collaborazione con ente esterno

No

PARTE II – ORGANIZZAZIONE DIDATTICA E AMMINISTRATIVA

Il corso in breve

Il corso di **Ingegneria del Suono (30 CFU)** offre un'immersione completa nel mondo delle tecnologie avanzate applicate alla produzione e alla gestione del suono. Pensato per chi vuole comprendere e padroneggiare gli strumenti tecnologici alla base della musica moderna, il corso esplora le intersezioni tra elettronica, informatica e creazione sonora.

Gli studenti acquisiranno competenze nell'uso di hardware specializzato, come sintetizzatori, interfacce audio e controller MIDI. Verranno approfonditi i principi dell'elettroacustica, della sintesi sonora e delle tecnologie digitali che permettono di manipolare il suono con precisione e creatività.

L'attenzione sarà rivolta anche alle innovazioni recenti, come l'intelligenza artificiale applicata alla composizione musicale e la realtà aumentata per esperienze sonore immersive. Ogni aspetto tecnologico sarà studiato non solo per comprenderne il funzionamento, ma per esplorarne le possibilità pratiche e creative.

Progettato per preparare i futuri professionisti della musica digitale, il corso offre una formazione solida per chi desidera lavorare nei settori dell'ingegneria del suono, della produzione musicale elettronica e della progettazione sonora per il multimedia. Durante il percorso formativo, gli studenti esploreranno l'intero "ecosistema" della produzione musicale digitale, acquisendo competenze pratiche in:

- Acquisizione e manipolazione del suono: Tecniche di registrazione professionale con microfoni avanzati e interfacce audio ad alta fedeltà, con un'enfasi sulla cattura precisa e sull'elaborazione digitale del segnale.
- Sintesi sonora e sound design: Creazione di suoni personalizzati attraverso sintetizzatori hardware e software, esplorando metodi come la sintesi FM, subtrattiva, granulare e wavetable.
- Automazione e controllo: Utilizzo di controller MIDI, sistemi di automazione e programmazione di eventi sonori in tempo reale per ottimizzare la fluidità dei processi produttivi.
- Mixaggio e mastering avanzato: Applicazione di strumenti digitali per il bilanciamento delle frequenze, l'ottimizzazione dinamica e la preparazione di file audio per piattaforme digitali e multicanale.
- Integrazione di tecnologie emergenti: Studio e utilizzo di algoritmi di intelligenza artificiale per la generazione automatizzata di tracce musicali, tecniche di spatial audio per esperienze tridimensionali e strumenti di realtà virtuale per la produzione e fruizione del suono.

Lista delle attività didattico-formative che compongono il corso

Codice insegn.to Gomp	attività didattico- formativa e relativo SSD	semestre	docente e relativo SSD	ore di didattica assistita	CFU
20810514	Elettrotecnica e Circuiti (già Elettrotecnica ed Elettronica) (IIET- 01/A)	II Semestre	Alessandro Salvini (IIET- 01/A)	81	9
20810526-1	Fondamenti di informatica I Modulo (IINF- 05/A)	I Semestre	Carla Limongelli (IINF-05/A)	54	6
	Elettroacustica*	II Semestre	Giosuè Caliano (ING-IND/31)	81	9
	DIGITAL AUDIO PROCESSING*	II Semestre	Alessandro Salvini (IIET- 01/A)	54	6

^{*}Il corso è attivato all'interno del percorso minor. Non sono previsti oneri finanziari su tale corso in quanto coperto come compito didattico (e/o a titolo gratuito) da personale interno del Dipartimento di riferimento.

Ulteriori informazioni sulle attività didattico-formative

ELETTROTECNICA E CIRCUITI (Già ELETTROTECNICA ED ELETTRONICA)

Denominazione in lingua inglese: Electrical Engineering

Lingua di svolgimento: Italiano

Programma:

Fondamenti di Elettricità e magnetismo. Equazioni di Maxwell. Dai campi ai circuiti: limiti e validità della rappresentazione circuitale. Leggi di Kirkhhoff. Caratteristiche topologiche dei circuiti. Collegamenti in serie e in parallelo, nodi e maglie. Introduzione alla teoria dei grafi. Tagli e maglie fondamentali. Matrici di incidenza. Convenzioni dei generatori e degli utilizzatori. Potenza elettrica e passività. Teorema di Tellegen. Reciprocità. Bipolo, multipolo, porta e multiporta. Linearità, tempo-invarianza, memoria. Leggi costitutive dei bipoli passivi R L C e dei generatori ideali di tensione e di corrente. Dualità. Generatori controllati, Circuiti Magnetici, Legge di Hopkinson, mutue induttanze, giratore, trasformatore ideale e nullore.

Analisi di reti senza memoria: metodi generali dei nodi e delle maglie (anelli), trasformazioni topologiche equivalenti e teorema di Thevenin. Teorema del massimo trasferimento di potenza. Interruttori ideali. Trasformata di Laplace per la risoluzione dei circuiti lineari con memoria. Impedenza, ammettenza e funzioni di rete nel dominio di Laplace. Metodi di antitrasformazione delle funzioni razionali fratte. Estensione al dominio di Laplace dei metodi per la risoluzione dei circuiti. Risposta transitoria e permanente. Risposta libera e forzata. Stabilità nei circuiti. Analisi di regimi permanenti. Circuiti in continua. Regime sinusoidale. Metodo dei Fasori. Impedenza, ammettenza e funzioni di rete nel dominio della frequenza. Sistemi trifase. Potenza attiva, reattiva e complessa. Confronto tra dominio di Laplace e dominio della frequenza. Circuiti risonanti. Cenni

sul Regime armonico e Serie di Fourier. Proprietà filtranti dei circuiti passivi e attivi ideali. Principali rappresentazioni dei due-porte bilanciati e sbilanciati. Interconnessione di due-porte.

Modalità di erogazione: Blended (frontale con diretta streaming e disponibilità di registrazioni)

Testi adottati:

Dispense a cura del docente

Bibliografia di riferimento:

G. Rizzoni. Elettrotecnica – Principi e applicazioni, McGraw Hill

M. Pieraccini, Fondamenti di elettronica – Ed. Esculapio

Modalità di valutazione: Prova scritta/orale.

FONDAMENTI DI INFORMATICA

Denominazione in lingua inglese: Informatics

Lingua di svolgimento: Italiano

Programma:

Fornire gli elementi di base della "cultura informatica" attraverso strumenti, metodologici e concettuali, efficaci e duraturi per affrontare in modo flessibile l'evoluzione tecnologica e il vasto mondo delle applicazioni. Obiettivi particolari sono: - introdurre l'Informatica come disciplina per la soluzione automatica di problemi; - esaminare i concetti di base della programmazione degli elaboratori elettronici; gli strumenti linguistici, le metodologie e tecniche, in parte formali ed in parte pragmatiche, della programmazione e i relativi aspetti qualitativi dell'efficienza e della correttezza; - introdurre tecniche di programmazione come iterazione e ricorsione; Introduzione strutture dati come array e liste.

Fornire gli elementi di base della "cultura informatica" attraverso strumenti, metodologici e concettuali, efficaci e duraturi per affrontare in modo flessibile l'evoluzione tecnologica e il vasto mondo delle applicazioni, sottolineando il ruolo dell'Informatica come disciplina per la soluzione automatica di problemi.

Obiettivi specifici:

- conoscenza degli elementi essenziali relativi all'architettura di un calcolatore e al sistema operativo, rappresentazione delle informazioni;
- capacità di progettare e codificare semplici algoritmi utilizzando la programmazione strutturata e le tecniche di programmazione di base come l'iterazione, nonché strutture dati elementari;
- conoscenza e utilizzo di metodologie di test (debugging) per il codice prodotto.

Modalità di erogazione: Blended

Testi adottati:

Dispense a cura del docente

Bibliografia di riferimento:

Kernighan, Ritchie Titolo: Il linguaggio C. Principi di programmazione e manuale di riferimento Edizione: Seconda edizione Editore: Pearson Anno: 2004

Modalità di valutazione: Prova scritta.

ELETTROACUSTICA

Denominazione in lingua inglese: Analog Electroacoustics

Lingua di svolgimento: Italiano

Programma:

Analogie elettromeccaniche, metodo delle impedenze, filtri acustici passivi, analogie con i circuiti elettronici.

Sistemi meccanico-acustici, trasduttori elettromeccanici.

Microfoni a condensatore, piezoelettrici, a bobina mobile e a nastro: sensibilità, risposta e direttività.

Altoparlanti, casse acustiche e diffusori: tipologie, sospensione pneumatica, bass-reflex, labirinto acustico, fattore di direttività delle sorgenti.

Livello dei segnali audio Decibel, Pesatura dei livelli, Livello di picco e fattore di cresta Headroom, Filtri passivi

Cavi e connessioni, Bilanciamento del segnale, Adattamento delle impedenze

La catena audio analogica, Mixing console

Sistemi di diffusione sonora. Controllo attivo del rumore: principio di funzionamento, interferenza tra onde acustiche, applicazioni. Principali sistemi di controllo.

Teoria del controllo analogico e digitale.

Modalità di erogazione: Blended

Testi adottati:

Dispense a cura del docente

Bibliografia di riferimento:

S. Santoboni, Elettroacustica, Masson, Milano, 1996.

A. Uncini, "Audio Digitale", Ed. McGraw-Hill, ISBN: 88 386 6317-3, 2006. Lombardo V., Valle A. (2008) - Audio e Multimedia, terza edizione, Apogeo

Modalità di valutazione: Prova orale

DIGITAL AUDIO PROCESSING

Denominazione in lingua inglese: Digital Audio Processing

Lingua di svolgimento: Italiano

Programma:

Sistemi di diffusione sonora. Controllo attivo del rumore: principio di funzionamento, interferenza tra onde acustiche, applicazioni. Principali sistemi di controllo.

Teoria del controllo analogico e digitale. Concetti fondamentali di fisica sonora e definizione delle fonti sonore musicali. Concetti fondamentali della teoria musicale (ritmo, melodia, armonia). Campionamento del suono. Introduzione a file audio e al protocollo MIDI. I sequenziatori fisici e logici. Esempi pratici di gestione professionale del software musicale nelle varie fasi di scrittura di brani musicali, equalizzazione, riverberazione, compressione, eccitazione armonica, creazione di immagini stereofoniche, utilizzo di limitatori e dithering. Algoritmi di intelligenza artificiale per la generazione musicale.

Modalità di erogazione: Blended (frontale con diretta streaming e disponibilità di registrazioni)

Testi adottati:

Dispense a cura del docente.

Bibliografia di riferimento:

S. Santoboni, Elettroacustica, Masson, Milano, 1996.

A. Uncini, "Audio Digitale", Ed. McGraw-Hill, ISBN: 88 386 6317-3, 2006.

Laboratorio di Tecnologie Musicali vol. 1 e 2 - D'AGOSTINO M., DE SIENA L., PAOLOZZI G., CAPPELLANI G.

Modalità di valutazione: Prova orale.

Numero minimo e massimo di iscritti ammissibili

Numero minimo: 5

Numero massimo: 30

Requisiti di ammissione

Il corso minor è ad accesso libero. Per essere ammessi al corso minor occorre essere in possesso di un diploma di scuola secondaria di secondo grado o di altro titolo di studio conseguito all'estero, riconosciuto idoneo secondo la normativa vigente. Per accedere proficuamente al corso minor sono richieste conoscenze di matematica e di scienze di base assimilabili a quelle acquisibili nelle scuole secondarie superiori. In particolare per le scienze si ritengono utili conoscenze di base nell'area della fisica classica.

Criteri di selezione dei partecipanti

Laddove il numero massimo di domande di ammissione sia superato, gli studenti saranno selezionati sulla base dei seguenti criteri:

- Ultimo titolo di studio conseguito: dottorato di ricerca (10 punti); laurea magistrale o magistrale a ciclo unico (8 punti); laurea triennale (5 punti); diploma di scuola secondario di secondo grado (2 punti);
- Voto di laurea (qualora conseguita ed in relazione all'ultimo titolo di laurea o laurea
- magistrale conseguito): 110 lode (10 punti); 100-110 (8 punti); inferiore a 100 (5 punti);
- Voto di diploma (qualora non si sia conseguita la laurea): 100 e 100 con lode (10 punti); 95-99 (8 punti); inferiore a 95 (5 punti);
- A parità di punteggio sarà data priorità a chi ha titolo di studio più avanzato;
- A parità dei precedenti sarà data priorità ai richiedenti con età anagrafica inferiore.

Contributi di iscrizione

Gli studenti regolarmente iscritti a un corso di laurea o di laurea magistrale o di dottorato di ricerca dell'Ateneo, anche in qualità di studenti in mobilità internazionale in ingresso, possono iscriversi gratuitamente al corso *minor* per il medesimo anno accademico, fatto salvo il pagamento dell'imposta di bollo.

Coloro che non siano contemporaneamente iscritti a un corso di laurea o di laurea magistrale o di dottorato di ricerca dell'Ateneo nel medesimo anno accademico sono tenuti al pagamento del contributo di iscrizione dell'importo di euro 480,00, oltre imposta di bollo.

Coloro i quali si trovino in condizioni di disabilità, con riconoscimento di handicap ai sensi dell'articolo 3, commi 1 e 3, della legge 5 febbraio 1992, n. 104, o con un'invalidità pari o superiore al 66%, sono esonerati dal pagamento dei contributi di iscrizione al corso e versano esclusivamente l'imposta di bollo.

Eventuali agevolazioni economiche

Nessuna agevolazione prevista

Prova finale

Prova finale non prevista