Simulation-Based Design Laboratory (SBDL)

Graduate course in Aeronautical Engineering Prof. Umberto Iemma

#	ТОРІС	Classes (h)	Homework (h)
1	Tools, software and textbooks	2	4
2	Setup of the computational environment	4	6
3	Assessment of the computational environment:	4	6
	coding, compilation, execution, i/o, post-		
	processing		
4	Linear algebra problems: matrix multiplication, lin-	4	6
	ear systems		
5	Coding practices for performance: cache-miss	2	4
	minimization		
6	Use of external libraries. Eigenproblems	4	6
7	Polynomial interpolation	2	6
8	Integration of ODE: explicit/implicit methods, Li-	4	6
	apunov stability		
9	Numerical integration: Newton–Cotes quadra-	2	6
	tures, Gaussian quadratures		
10	Numerical statistics: mean, standard deviation,	4	6
	skewness, kurtosis. Evaluation of uncertainty:		
	Monte Carlo method		
11	Systems of non-linear differential equations. Os-	4	6
	cillators, chaotic systems, Lorenz attractor		
12	Coding practices for performance: multithreading,	2	4
	message-passing		
	Total time	38	66

Syllabus - 6 CFU option

Final project, including preparation of the report = 40 h.

Syllabus - 3 CFU option

#	ТОРІС	Classes (h)	Homework (h)
1	Tools, software and textbooks	2	4
2	Setup of the computational environment	4	6
3	Assessment of the computational environment:	4	6
	coding, compilation, execution, i/o, post-		
	processing		
4	Linear algebra problems: matrix multiplication, lin-	4	6
	ear systems		
5	Coding practices for performance: cache-miss	2	4
	minimization		
6	Use of external libraries. Eigenproblems	2	6
7	Polynomial interpolation	2	6
8	Integration of ODE: explicit/implicit methods, Li-	2	6
	apunov stability		
	Total time	22	44

Final project, including preparation of the report = 20 h.